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Abstract—Code completion is an essential part of modern
IDEs. It assists the developers to speed up the process of coding
and reducing typos. In this paper, we exploit the deep learning
technique called LSTM to learn language models over large code
corpus and make predictions of code elements. Unlike natural
language, the innumerable identifiers lead to the vocabulary
explosion and more difficult to predict. Therefore, we propose
a new approach, the Induced Token based LSTM, to deal with
the massive identifiers, thus decrease the vocabulary size. In
order to induce the code tokens, we present two approaches,
one is a constraint character-level LSTM and the other one is
encoding identifiers with various preceding context before feeding
them into a token-level LSTM. Based on the two approaches,
a tool named Deep-AutoCoder is developed and evaluated in
two classic completion scenarios, that is, method invocation
completion and random completion. The experiment results
indicate that Deep-AutoCoder outperforms the state-of-the-arts
on method invocation completion and random code completion.
Additionally, the empirical results of Deep-AutoCoder indicate
that reducing the size of vocabulary can effectively improve the
precision of code completion.

Index Terms—Code Completion; Deep Learning; Language
Models;

I. INTRODUCTION

Code completion, as a vital part of code generation, has

become an essential feature in IDEs. It is one of the top 10

commands used by developers [1]. Intelligent code completion

can help to accelerate software development by eliminating

costly errors and suggesting accurate code elements including

identifiers, method invocations, constants, etc. However, exist-

ing intelligent code completion engines list candidates in the

alphabetical order or the usage frequency. In most cases, the

desired code elements are not listed in first few candidates and

programmers have to choose from these candidates.

To improve the performance of code completion, a number

of related techniques have been proposed. Asaduzzaman et al.

[2] present a context-sensitive example-based tool, CSCC, to

support the method invocations completion. It adopts the top

four lines to determine the context of a method call. However,

the features captured from the four lines are limited for making

predictions of method invocations. Some studies have tried

artificial intelligence techniques for code completion. Artificial

intelligence techniques especially language models have been

exploited to important software engineering tasks including

‡Equal contribution.§Corresponding authors.

code generation [3, 4, 5, 6, 7], source code summariza-

tion [8, 9], code clone detection [10], etc. Language models

have been widely used in various Natural Language Processing

(NLP) problems, such as Machine Translation [11], Text Sum-

marization [12], and Dialogue System [13]. Recent attempts

to addressing code completion using language models include

n-gram models [14, 15, 16], log-bilinear models [17, 18], etc.

These language models make predictions of program elements

based on a fixed set relatively features (e.g., the n code tokens

that precede the prediction). Such features are often a poor

choice because they capture only local dependencies of the

element to be predicted.
Programming language and natural language are very differ-

ent. Identifiers take up the majority of source code tokens [19],

hence play an important role in code completion. These

identifiers can be single characters or composed of several

words, thus lead to identifier explosion. Identifier explosion

has disastrous influence on the vocabulary size of language

models. As shown in Table I, we count the total tokens,

the number of lines, and the vocabulary size of different

languages. For natural language, we take the widely used

machine translation dataset WMT-14 [20]. The statistic results

indicate that the vocabulary ratio of programming languages

are much larger than natural language. The vocabulary size of

programming languages is at least twice as much as natural

languages’. Furthermore, the vocabulary size increases rapidly

as the total tokens growing.
In case of the explosion of identifiers, we propose a new

approach, Induced Tokens based Long-Short Term Memory

(LSTM), to code completion. Inducing tokens, i.e., encoding

identifiers, aims to decrease the number of identifiers. To in-

duce tokens, we take an empirical study on various approaches

including character-level LSTM and token-level LSTM with

identifier encoders. By inducing tokens, the vocabulary size

declines significantly. Based on the Induced Tokens based

LSTM, we develop a tool called Deep-AutoCoder. Deep-
AutoCoder is applied to classic code completion tasks, method

invocations completion on Java language and random com-

pletion on C language. The results demonstrate that Deep-
AutoCoder outperforms prior works on method invocations

completion. Furthermore, the Deep-AutoCoder can effectively

complete code elements randomly. The main contributions of

this paper are as follows:

• This paper proposes a new approach, Induced Tokens

159

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00030

Authorized licensed use limited to: Peking University. Downloaded on January 06,2025 at 01:10:38 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
STATISTICS FOR TOTAL TOKENS TOGETHER WITH VOCABULARY SIZE FOR PROGRAM LANGUAGE AND NATURAL LANGUAGE

Total Tokens Number of Lines Vocabulary Size Ratio1(%)

WMT-14 English dataset 304,000,000 12,000,000 160,000 0.05
WMT-14 French dataset [20] 348,000,000 12,000,000 80,000 0.02

C Programs from POJ 9,210,000 1,740,000 11,872 0.13

Python Projects from Github2 10,573,158 2,893,030 110,856 1.05
Eclipse 3.5.2 12,095,591 2,542,271 291,671 2.41

1 Ratio = V ocabulary Size
Total Tokens

× 100%
2 Python projects that exploit Tensorflow framework

based LSTM, to code completion problems. The language

models learned from large codebases can accurately pre-

dict method calls and random code completion.

• We propose two approaches to induce tokens, i.e.,

the constraint character-level LSTM and the token-level

LSTM with identifier encoders to deal with massive

identifiers.

• An implementation of our approaches called Deep-
AutoCoder and evaluation the approaches on large-scale

programs.

II. MOTIVATION AND BACKGROUND

We begin by introducing the problem of Code Completion

and its challenge. Then, we explain the language model that

we use in this paper.

A. Code Completion

Code completion is one of the main features in modern

IDEs, such as Eclipse and IntelliJ IDEA. It is widely used

in method invocations completion and keywords completion.

Most code completion techniques take advantage of static

information to analyze the code elements. Then the code

completion engines list all candidates in alphabetical order.

Programmers spend a lot of time searching the right code el-

ements through up and down keys from numerous candidates.

To motivate our approach and obtain a better intuition,

consider the following code snippet.

void dispose (boolean remove){
if(index<0)

return;
if(remove)

browser.webBrowser.
destroyFunction(this);

browser=null;
name=functionString=null;
index=-1;

}

It is a method that aims to “remove a browser” and it

should invoke the method destroyFunction of webBrowser
object. Through analyzing the static information of the object

“webBrowser”, the code completion engine of Eclipse lists

all methods that webBrowser declares in alphabetical order.

However, the desired method destroyFunction doesn’t occur

in the Top10 method candidates. Furthermore, it is impossible

for existing code completion engines to predict identifiers or

keywords without typing the first few letters of them. These

code completion engines omit the context information of the

partial programs and list the candidates in alphabetical order.

In addition, they cannot complete code elements randomly

which is an urgent issue. In this paper, we exploit deep learning

approaches to address these issues. We focus on two scenarios

of code completion: (1) The completion of method invocations

because method invocations account for a large proportion

of the programs; (2) The random completion including the

identifiers, keywords, etc.

B. Embedding for identifiers

Naturally, neural networks take words from a vocabulary

as input and embed them as vectors into a lower dimensional

space, that is, word embedding [21, 22]. Word embeddings

are the weights of the first layer, which is usually referred

to as Embedding Layer. Generating word embeddings with a

very deep architecture is simply too computationally expensive

for a large vocabulary. Unlike words in natural language,

programmers define various identifiers. As shown in Table I,

the vocabulary ratio of programming languages significantly

higher than natural language. With the same order of magni-

tude, the vocabulary size of programming languages is at least

twice that of natural language. The vocabulary size increases

even more significantly along with the increasing of total

tokens. Building a language model for source code with the

huge vocabulary is challenging. Therefore, inducing tokens is

an urgent issue for better exploiting the language models to

code completion.

Identifiers take up the majority of source code tokens, as

shown in Table II. Inducing identifiers is an effective approach

to decrease vocabulary. An identifier can be a combination of

several words or just a meaningless character. These definition

rules of identifiers are helpful to encode the identifiers. In this

paper, we propose two induced tokens approaches.

• A constraint character-level LSTM to model the source

code. Characters in source code are significantly less

than the tokens. When applied to method invocations

completion, the generation is limited into a smaller space

by adding constraints.

• A token-level LSTM with an encoder that encodes iden-

tifiers based on preceding context. The identifiers are

represented by the preceding context, e.g., their types,

previous tokens, and the index of the identifier.
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Fig. 1. An illustrate of a basic LSTM

TABLE II
STATISTICS OF VOCABULARY TOKENS FOR C PROGRAMS

Token Type Token counts Proportion

Identifiers 11,746 98.6%
Keywords 126 1.4%

Total Tokens 11,872 100%

C. Language Model

Our work is inspired by the language models on NLP

problems. Hindle et al. [23] have addressed programming

languages are repetitive and predictable like natural language.

A language model essentially assigns a probability to an utter-

ance. And for us, ”utterances” are programs. By calculating a

probability distribution of code sequences and decreasing the

entropy of this distribution, we will often be able to guess with

high confidence what follows the prefix of a code sequence.

The language model is a probabilistic model leaning how

to generate a language. For a sequence y = (y1, y2, ..., yN ),
the language model aims to estimate the probability of it.

p(y1y2...yN ) =
N∏

t=1

p(yt|y1...yt−1) (1)

where N is the number of tokens in the sequence. Therefore,

how to compute p(yt|y1...yt−1) is the vital problem we should

consider.

In this paper, we adopt a language model based on the deep

neural network called LSTM. LSTM is one of the state-of-the-

art Recurrent Neural Networks (RNN). Unlike N-grams that

predict a token based on a fixed number of preceding tokens,

RNN [24] can predict a token by preceding tokens with longer

distances. RNN is a natural generalization of feedforward

neural networks to sequences. It can in principle map from

the entire history of previous inputs to each output. As the

Figure 1 shown, its chain-like nature reveals that recurrent

neural networks are intimately related to sequences and lists.

It’s the natural architecture of neural network to use for such

data. Additionally, LSTM outperforms general RNN because

it is capable of learning long term dependencies. It works

tremendously well on a large variety of problems and is now

widely used [20, 25]. Therefore, we adopt the LSTM to learn

the language models for source code.

The LSTM includes three layers, i.e., an input layer, a

hidden layer and an output layer. The input layer maps each

token in the sequence to a vector. By reading each vector, the

hidden layer computes and updates the hidden states. Then the

output layer estimates the probabilities of the following token

given the current hidden state. LSTM introduces a structure

called the memory cell to solve the problem that ordinary

RNN is difficult to learn long-term dependencies in the data.

A memory cell is composed of four main elements: an input

gate, a neuron with a self-recurrent connection (a connection

to itself), a forget gate and an output gate.

At time stamp t, the memory ct and the hidden state ht is

updated with the following equations

it = σ(Wiyt + Uiht−1) (2)

ft = σ(Wfyt + Ufht−1) (3)

ot = σ(Woyt + Uoht−1) (4)

where i, f and o are gate activations. σ is the sigmoid layer

that outputs numbers between zero and one, describing how

much of each component should be let through. Gates are a

way to optionally let information through. They are composed

out of a sigmoid neural net layer and a pointwise multiplication

operation.

The old cell state ct−1 is updated into the new cell state ct:

ĉt = tanh (Wgyt + Ught−1) (5)

ct = it ⊗ ĉt + ft ⊗ ct−1 (6)

where ĉt is a vector of new candidate values created by a tanh

layer. Finally, the P (yt|y1...yt−1) is predicted according to the

current hidden state ht

ht = ot � tanh(ct) (7)

p(yt|y1...yt−1) = g(ht) (8)

During training, g is learned from data to minimize the error

rate of the estimate y.
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Fig. 2. The Overall Workflow of code completion

III. DEEP-AUTOCODER

A. Overview

In this section, we describe Deep-AutoCoder, an imple-

mentation of the induced tokens based LSTM. Deep learning

approaches have been proved to be good at capturing useful

features and building the maps from input to output auto-

matically. Deep-AutoCoder adopts the Induced Tokens based

LSTM for the task of code completion. The language model

is trained over the programs extracted from large-scale code

corpora and then predict the code elements.

Figure 2 shows the overall architecture of Deep-AutoCoder.

It mainly consists of three steps, source code processing

phase, offline training phase, and an online completion phase.

The source code have to be parsed into specific forms that

are suitable for various approaches. In this paper, we adopt

Abstract Syntax Tree (AST) to parse the source code. Then

induce the parsed tokens with different approaches, i.e., a

constraint character-level LSTM and a token-level LSTM with

preceding context identifier encoder, in different scenarios

respectively in the following subsections. The programs in

training corpus are trained by deep learning models, i.e.,

the two-layer LSTM as describe in Section II. During the

prediction phase, the inputs of the learned model are partial

programs and the outputs are the recommended code elements

for the specific program contexts.

B. Constraint character-level LSTM

Deep-AutoCoder adopts a constraint character-level LSTM

with induced tokens to method invocations completion. Rec-

ommendation of method invocations is a vital part of code

completion because of the high frequency usages [26]. Many

IDEs, e.g., Eclipse and IntelliJ, automatically list all the avail-

able member functions when programmers types a dot after

an object. The programmers can then select the appropriate

method call from the list. These method candidates are listed

in alphabetical order or according to the frequency considering

the programmers usage. Choosing the appropriate method

from the listed candidates is time consuming for programmers.

In order to make more accurate recommendations, Deep-
AutoCoder adopts a constraint character-level LSTM model

for method calls prediction. The Induced Tokens based LSTM

model is a variant of the basic LSTM model that introduced

in Section II.
Figure 3 illustrates the details of the constraint character-

level LSTM model using the program example shown above.

The model takes code characters instead of tokens of source

code as inputs. For example, the input sequence is the

characters browser.webBrowser and its one-hot vectors are

x1,x2, ...,xT and xi ∈ {0, 1}|D|, where D is the number

of the characters in vocabulary. We assume that each line of

the code has at most 100 characters. Therefore, T = N × 100
where N represents the Line of Code (LOC). hi represents

the hidden state of LSTM cell at the current time stamp and

is computed based on the previous LSTM cell hidden state

hi−1 and the current input embedding as

hi = f(xi
TE, hi−1; θ)

where E ∈ R
|D|×H is a word embedding matrix and H is

the embedding dimensionality for code. Finally, the partial

program x1, ...,xT is encoded into a fixed-length vector c.
When generating a method name character by character,

we add constraints into Deep-AutoCoder. Deep-AutoCoder
extracts the object that intents to invoke a method and the class

it is. Then, it gets all methods the class declares by traversing

the AST. The details of the extraction process will be given

later. By adding constraints, the generating space is limited

into these possible methods. Within the generating scope,

Deep-AutoCoder predicts the first character of the method

name y = g(c). The following characters are predicted by

the procedure described in Section II. Instead of generating

one character sequence, Deep-AutoCoder lists all the possible

candidates according to their probabilities. Each branch in the

predicting procedure is an LSTM and in each time step Deep-
AutoCoder sorts the probabilities of the generated characters.

As shown in Figure 3, (d, e, j, ...) are first characters of method

name candidates sorted by their probabilities and the following

characters are generating with the same rules. Finally, the Top

1 method name is destroyFunction which is the appropriate

method invocation with the context.

C. Token-level LSTM with preceding context identifier encoder
Completion at all possible positions while programming is

an ideal result of artificial intelligence for code completion. It
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Fig. 3. The constraint character-level LSTM for method calls completion

is much harder than the completion of method calls, because

the method invocation space can be limited into the declared

methods of the specific class. The generation over the large-

scale vocabulary is challenge for LSTM. In order to decrease

the vocabulary size, we present several approaches to induce

identifiers. These approaches aim to encode identifiers with

preceding context.

Programmers often declare these identifiers according to

their context information. For example, identifiers in C lan-

guage are defined by simple characters for(int i; i < n; i++),
tokens related to their types char *chars, or combination

of words FILE *file to read. Their textual information is

meaningless in expressing programs’ semantics. Therefore,

the context information is able to represent identifiers to a

large extent. Deep-AutoCoder adopts the preceding context to

encode the identifiers and greatly reduces the user defined

identifiers in the vocabulary. We give empirical results for

different preceding context to encode identifiers. In this paper,

we evaluate the following approaches to encode identifiers.

Index The identifiers in a program are represented by index

1, 2, ..., n. The same identifiers for a program occur in different

positions are denoted with the same index. For example, the

code snippet for(int i; i < 100; i + +) is represented by

for(int ID 1; ID 1 < 100; ID 1 + +).
Type+Index Additionally, we integrate Index with identi-

fiers’ Types. Therefore, the code that presents above is repre-

sented by for(int INT 1; INT 1 < 100; INT 1++). By

adding identifiers’ types, the identifiers can be distinguished

by not only positions but also types.

Previous tokens The third approach that Deep-AutoCoder
adopts to encode identifiers is taking their previous tokens

(these tokens are connected by ) to represent them. We

evaluate one, two, and three previous tokens to encode the

identifiers respectively.

ID To evaluate the upper bound precision of the token-level

LSTM, Deep-AutoCoder replaces all identifiers with the token

ID. The for expression is represented as for(int ID; ID <
100; ID + +). This encoding method doesn’t concern the

differences between identifiers. And it give the ceiling of code

completion at all possible positions by treating source code as

natural language.

After inducing identifiers, the code sequence is fed into

the two-layer LSTM that introduced in Section II-C. The

language model generates the following token according to

the probability distributions given the partial program.

IV. EVALUATION

We conduct experiments to answer the following research

questions:

• RQ1. Does the language model character-level LSTM

with constrains have affects on completing the method

invocations?

• RQ2. Does token-level LSTM with the induced tokens

contribute to random code completion? What’s the rela-

tionship between vocabulary size and completion preci-

sion?

A. RQ1. Constraint character-level LSTM for method invoca-
tion completion

The most relevant work to recommend method invocations

is Asaduzzaman et al. [2]. They develop a code completion

tool called CSCC and the tool collects the context of the

current method call request and matches it from the example

code base. These matching method calls are presented to pro-

grammers in descending order of similarity values. However,

CSCC only considers top four lines to determine the context

of a method call and the limit context information may result

in high similarity with lots of matches.

To address these issues, Deep-AutoCoder adopts a constraint

character-level LSTM to predict the method name to be

invoked.

The details of the evaluation are introduced as follows:
1) Dataset Details: For comparison, we use the same

dataset Eclipse 3.5.2 and focus on the library API named

Standard Widget Toolkit (SWT)1. The other seven projects

that they evaluate, e.g., Vuze and NetBeans, are too small

to train. Comparing different approaches on the Eclipse can

still prove that Deep-AutoCoder performs well on Java method

invocations completion.

The data processing is as follows:

• Parse source code files of Eclipse project into Abstract

Syntax Trees (ASTs) using Eclipse’s JDT compiler2;

1https://www.eclipse.org/swt/
2http://www.eclipse.org/jdt
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• Find all method invocations of SWT in each source code

files;

• For each method invocation o.m() where o is an instance

of a SWT class, we find its object o;

• By traversing the AST, get the class C of the object o;

• Extract all methods C.m1, C.m2, ..., C.ml that C de-

clares.

As describe above, we extract the classes of SWT library and

their methods. These extracted methods of specific classes are

used as the constraints to the LSTM, that is, the generation

space of the language model. Then, we remove all the com-

ments and import statements. The remaining pure source code

are used to train and test the language models.

2) Accuracy Measure: To measure the performance of

Deep-AutoCoder in method invocations completion, we com-

pute the precision, recall and F-measure for Top1, Top3, and

Top10 on the test set respectively.

These evaluation criteria are computed as follows:

Precision =
|#Accepted recommendation|
|#Generated recommendation| (9)

Recall =
|#Accepted recommendation|

|#Method invocations| (10)

F −measure =
2 · Precision ·Recall

Precision+Recall
(11)

where #Accepted recommendation is the number of

correct recommendations out of the total test cases.

#Generated recommendation is the number of recommen-

dations. #Method invocations is the number of method

invocations in our test data. Consequently, a recommendation

is accepted if and only if the recommended method is identical

to the current method appearing in the source code. The

higher Precision, the more correct code are generated. And

the higher Recall, the higher coverage the appropriate code

elements following the given code snippets.

3) Training Details: Deep-AutoCoder splits all data into a

train set, a validation set, and a test set with the proportion of

8 : 1 : 1. As described in Section III-B, we adopt the constraint

character-level LSTM for method invocations’ completion

with different LOCs varying from 1 to 12. Additionally, to

improve the training performance, we exploit a two-layer

LSTM to learn the source code.

We set the batch size (i.e., the number of instances per

batch) as 20. All models are optimized by RMSprop [27]

which divides the gradient by running average of its recent

magnitude. The learning rate is set to 5× 10−4 and it decays

after 10 epochs. We set the word embedding and hidden state

to 1024. The vocabulary size is 97 and contains the lowercase

and uppercase letters and numbers and other symbols that code

uses.

For implementation, we use Torch 3, an open source deep

learning framework. The model is trained in a server with one

3http://torch.ch/

Nvidia GTX1080 GPU. The training runs for 50 epochs and

takes about 10 hours.

4) Precision of method invocations completion: We eval-

uate the accuracy of SWT APIs completion on the Eclipse

3.5.2 which is the dataset CSCC used. We calculate the Top

1, Top 3, and Top 10 precision respectively. Table III shows

the precision, recall, and F-measure values for four code

completion systems including CSCC, a token-level LSTM

with constraints, a character-level LSTM with constraints, and

Deep-AutoCoder in which Deep-AutoCoder is a character-

level LSTM with constraints. The number of LOC in the

brackets means that the model can achieve the highest pre-

cision with the LOC. For example, Deep-AutoCoder performs

best when trained by 12 LOC code snippets.

For 77.9% method invocations, Deep-AutoCoder can di-

rectly generate the accurate recommendations. And 94.5%

method invocations can be recommended in Top 10 candidates.

It significantly outperforms the traditional method CSCC.

The token-level LSTM with constraints has a lower precision

because of the larger vocabulary size of 20,798. The precision

of Top1 increases 8.1% by decreasing the vocabulary size.

For Deep-AutoCoder, the generating space is limited into

the classes’ methods. However, the generation space of a

general character-level LSTM is all values of the source

code vocabulary. Compared to general character-level LSTM,

the precision of Deep-AutoCoder improves 11%. The results

indicate that the generation space has a larger influence than

vocabulary size for method invocations completion.

5) Precision along with LOCs: We evaluate the relationship

between the precision of method invocations completion and

LOCs. For token-level LSTM, we train and test models with

5, 10, 15, 20, and 25 LOCs respectively. And from 1 to 12

LOC for character-level LSTMs are trained and tested. The

two kinds of LSTMs have different behaviors on the LOC

variety. As shown in Figure 4(b) and Figure 4(c), character-

level LSTMs are much more sensitive to LOC. Their accuracy

has an obvious upward trend along with the increase of LOC.

The longer code snippets are helpful to the method invocations

recommendation. When LOC less than 6, there is a sharp

increase of the precision. And the precision is tend to be

plateau greater than 8. Additionally, the Top3 and Top10

precision of Deep-AutoCoder is much higher than general

character-level LSTM with shorter code snippets (e.g., code

snippets less than two lines).

For comparison, the token-level LSTM is trained and tested

on 5, 10, 15, 20, 25 LOCs. Figure 4(a) indicates that token-

level LSTM is in a plateau from five LOC. It has a slightly

rising in 10 and 15 LOC, and in 15 LOC the precision rises to

the highest point. Additionally, the precision begins to decline

after that.

All these results demonstrate that the length that LSTM

can deal with is limit. At first, the precision is increase

along with the LOC grows. Because the longer code snippets

include more information that method invocation completion

needs. However, when the length achieves a maximal point

the LSTM can handle, the precision has little change. Because
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TABLE III
ACCURACY COMPARISON FOR SWT APIS COMPLETION ON ECLIPSE 3.5.2 BETWEEN PRIOR WORK AND OUR MODELS

Top1 Top3 Top10
Recall

Precision F-Measure Precision F-Measure Precision F-Measure
CSCC 0.6 0.75 0.8 0.88 0.9 0.94 1

Token-level LSTM
with Constraint (15 LOC)

0.696 0.82 0.835 0.91 0.916 0.96 1

Character-level LSTM
without Constraint (12 LOC)

0.669 0.80 0.732 0.85 0.752 0.86 1

Deep-AutoCoder
(12 LOC)

0.779 0.88 0.891 0.94 0.945 0.97 1

information of the front code snippets will be lost if the code

snippets are too long.

B. RQ2. Token-level LSTM with preceding context encoder for
random completion

There are little researches on code completion at all possible

positions. Deep-AutoCoder adopts the token-level LSTM with

preceding context encoder to deal with massive identifiers.

1) Dataset Details: Deep-AutoCoder completes code at all

possible positions on a new C language corpus collected from

POJ4. POJ is an Online Judge System, which contains large

amounts of problems from different programming contests. We

collect the solutions that programmers submit and process the

identifiers in these programs by different preceding context

encoders.

The maximum code length is set to 512 and the longer

programs will be cut. And all comments are removed before

fed into the model.

2) Accuracy Measure: To evaluate the precision of the code

completion at all possible positions, we present four precision

measures.

• Total Precision illustrates the overall performance of

various tokens in programs.

Total Precison =
#Correct tokens

#Total tokens
(12)

• Identifiers Precision illustrates the ability of identifiers

prediction.

Identifiers Precision =
#Correct identifiers

#Total identifiers
(13)

• Keywords Precision Besides the identifiers, we also

evaluate the completion of other tokens such as keywords.

Keywords Precision =
#Correct keywords

#Total keywords
(14)

• Distinction illustrates the ability to distinct different

identifiers.

Distinction =

∑
Sample Distinction

#total samples
(15)

4http://poj.org/

and

Sample Distinction = 1− |#predicted−#original|
#original

(16)

where #predicted and #original mean the identifier num-

bers in the predicted and original programs.

3) Training Details: Similar to the training process above,

Deep-AutoCoder splits dataset into three parts and is trained

by the Torch framework. Deep-AutoCoder trains token-level

LSTM with different preceding context encoders respectively.

We evaluate all models on 32 and 512 word embeddings

respectively and 512 hidden states. Models are optimized by

Adam with 32 samples each batch.
4) Precision for different induced tokens approaches: We

evaluate different encoders to encode identifiers with different

preceding contexts and the results are shown in Table IV. Each

model is evaluate on two word embedding dimension, that is,

32 dimension and 512 dimension. Among them, the token-

level LSTM takes source code tokens as input without any

process. And a token occurring with a frequency of less than 3

is replaced by an UNK token and the vocabulary size is 7,439.

The others are token-level LSTM that integrates different iden-

tifier encoders that represent identifiers with ID token, Index,

Type+Index, and Previous tokens. By encoding identifiers with

preceding context, the vocabulary size decreases significantly

as Table IV demonstrates.

The model integrating ID identifier encoder has the highest

precision including the identifier, kewords, and total precision.

It can determine the location of 90.99% identifiers accurately.

Additionally, it can accurately predict 83.18% keywords which

outperforms the other models. However, the distinction is

meaningless for the ID identifier encoder, because all the

identifiers have no difference by representing as the ID token.

In a word, this method is an upper bound of LSTM to

code completion without any explicitly using of structural

information.

The Type+Index encoder can effectively predict identifiers

(80.37%) and keywords (82.16%). At the same time, it ef-

fectively differentiates identifiers. Leave the meanings of the

identifiers, most programs that generated by Deep-AutoCoder
can run without bugs. The results of the Type encoder and

Type+Index encoders demonstrate that the type information is

helpful for both identifiers, and keywords completion.
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(a) Token-level LSTM (with constraints) (b) Character-level LSTM (without constraints) (c) Deep-AutoCoder: Character-level LSTM (with
constraints)

Fig. 4. Accuracy of method invocation completion along with LOC

Compared to the type and the index information, exploiting

the previous tokens to encode the identifiers has lower preci-

sion. Additionally, the more previous tokens that encoders use

the lower precision.

Overall, reducing the size of vocabulary by encoding the

identifiers can effectively improve the completion precision of

both identifiers and keywords.

5) Influence of the word embedding dimension: The word

embedding dimension also has influence on code completion.

When the dimension drops to 32, the precision of all models

declines. Among them, the model integrating ID encoder

has the least influence. Its precision decreases by 0.5% and

the other encoders decrease about 1%. However, the word

embedding dimension has a large influence on the precision

general token-level LSTM. Its identifiers, keywords, and total

precision declines about 3% respectively. That’s because the

vocabulary of the general token-level LSTM is much larger

than other models. The small word embedding dimension can

not effectively handle the distribution of large dictionary. Mul-

tiple tokens in the dictionary can be mapped to embeddings

that are too close to distinct.

6) Influence of vocabulary size: Figure 5 illustrates the

relationship of the precision and vocabulary size. With the

increase of vocabulary size, the precision of identifiers and

keywords reduce significantly for both 32 and 512 word

embedding dimensions.

V. DISCUSSION

A. Why does Deep-AutoCoder work?

A major challenge for code completion is innumerable

identifiers. Existing context-based approaches and language

models such as N-grams usually have no ability to process

identifiers and lack a deep understanding of the distribution

of source code. We have identified two advantages of Deep-
AutoCoder that address these problems.

Preceding context based identifier encoder By encoding

identifiers with their preceding contexts, the vocabulary size

reduces significantly. It is effectively to train a model to

complete the identifiers with a bit tokens. To estimate the upper

bound of RNN for random code completion, we represent

all identifiers as ID token. Although the identifiers of the

program that generated by it can not be distinguished, it gives

the evidence of at most 14% of the room for improvement.

Additionally, we evaluate different encoders that can not only

reduce the identifiers but also keep their distinction.

Learning code sequence Another advantage of our ap-

proach is that, it can learn common patterns of source code.

The models themselves are language models and remember

the likelihoods of different programs. The hidden layers of our

models have the memory capacity. They consider not only the

individual tokens, but also their relative positions in source

code.

B. Threats to validity

We have identified the following threats to validity:

Source code is statically-typed language The source code

investigated in this paper is statically-typed languages. Hence,

they might not be representative of dynamic programming

languages, e.g., Python and JavaScript. In the further, we will

extend the model to other programming languages.

Without explicit structural information In this paper, we

leverage the language model to code completion. The language

model is trained on the plain code without explicit structural

information. In addition, we also estimate the upper bound

of the language model for source code. In the future, we will

investigate a better model to learn the structure of source code.

VI. RELATED WORK

The last few years have seen a renewed interest in var-

ious synthesis techniques which promise to simplify vari-

ous software development tasks. Asaduzzaman et al. [2]

describe a novel technique called Context Sensitive Code

Completion (CSCC) for improving the performance of API

method call completion. To recommend completion proposals,

CSCC ranks candidate methods by the similarities between

their contexts and the context of the target call. CSCC only

considers framework or library APIs. Apart from method call

completion, Asaduzzaman et al. [28] also present a study of

the completion of method parameters. This paper leverages

source code localness property, static types and previous code

examples to recommend method parameters.
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TABLE IV
ACCURACY OF DIFFERENT IDENTIFIER ENCODERS WITH PRECEDING CONTEXT

Dimension Total Precision(%) Identifiers Precision(%) Keywords Precision(%) Distinction(%) Vocabulary Size

Token-level
32 74.72 70.53 77.43 86.66

7,439
512 77.36 74.23 79.41 87.86

Index
32 79.60 77.62 80.97 85.13

144
512 80.64 79.12 81.72 83.75

Type+Index
32 79.72 78.05 80.89 84.46

187
512 81.42 80.37 82.16 84.13

Previous 1 token
32 79.86 78.18 81.02 86.07

245
512 80.84 79.77 81.57 84.92

Previous 2 tokens
32 78.32 75.95 79.94 87.03

568
512 78.20 76.06 79.67 86.21

Previous 3 tokens
32 78.14 75.20 80.16 86.46

1,052
512 76.78 74.45 78.34 87.03

ID
32 85.93 90.49 82.59 −

127
512 86.48 90.99 83.18 −

(a) Influence of vocabulary size on dimension 32 (b) Influence of vocabulary size on dimension 512

Fig. 5. The precision variety with the size of vocabulary on different word embedding dimension

Additionally, some language models have been used in

building probabilistic model of code. N-gram model is the

most popular and widely used probabilistic model of source

code. Due to its simplicity and efficient learning, it is applied

to code completion task [14, 15, 16, 23]. Hindle et al. [23]

first exploited the N-gram to model source code and developed

a code completion engine for Java. It substantially improves

upon the existing suggestion facility in the widely-used Eclipse

IDE. Soon after, various improvements are proposed to address

some of the N-gram limitations. Nguyen et al. [15] develop a

code suggestion engine that integrates the semantic N-grams,

global concerns, and pairwise association. Tu et al. [16]

introduce a cache language model that consists of an N-gram

and a cache component to exploit localness. Raychev et al.

[14] leverage N-gram and RNN to synthesize programs with

holes using APIs.

Furthermore, more complicated language models are grad-

ually used to code completion. Raychev et al. [4] introduce

an approach that learns a probabilistic model of code as

learning a decision tree in a Domain Specific Language

(DSL) over ASTs. The probabilistic model of code automati-

cally determines the right context when making a prediction.

Bhoopchand et al. [29] introduce a neural language model with

a sparse pointer network to complete the dynamically-typed

programming language Python. The pointer network aims at

capturing very long-range dependencies.

VII. CONCLUSION

In this paper, we propose a new approach, Induced Tokens

based LSTM, to code completion. By inducing the tokens, the

vocabulary size decreases significantly. We propose two ap-

proaches to decrease the vocabulary size, constraint character-

level LSTM and token-level LSTM with identifier encoders.

Additionally, a tool named Deep-AutoCoder is developed

based on these approaches. Deep-AutoCoder is applied to two

scenarios, method invocations completion and random code

completion. Our empirical study has shown that the precision

improves significantly by decreasing of vocabulary size. In the

future, we will explore the models that can better fit the source

code.
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